(2x^3-9x^2+7x+6)/(2x+1)

Simple and best practice solution for (2x^3-9x^2+7x+6)/(2x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (2x^3-9x^2+7x+6)/(2x+1) equation:


D( x )

2*x+1 = 0

2*x+1 = 0

2*x+1 = 0

2*x+1 = 0 // - 1

2*x = -1 // : 2

x = -1/2

x in (-oo:-1/2) U (-1/2:+oo)

(2*x^3-(9*x^2)+7*x+6)/(2*x+1) = 0

(2*x^3-9*x^2+7*x+6)/(2*x+1) = 0

2*x^3-9*x^2+7*x+6 = 0

2*x^3-9*x^2+7*x+6 = 0

{ 1, -1, 2, -2, 3, -3, 6, -6 }

1

x = 1

2*x^3-9*x^2+7*x+6 = 6

1

-1

x = -1

2*x^3-9*x^2+7*x+6 = -12

-1

2

x = 2

2*x^3-9*x^2+7*x+6 = 0

2

x-2

2*x^2-5*x-3

2*x^3-9*x^2+7*x+6

x-2

4*x^2-2*x^3

7*x-5*x^2+6

5*x^2-10*x

6-3*x

3*x-6

0

2*x^2-5*x-3 = 0

DELTA = (-5)^2-(-3*2*4)

DELTA = 49

DELTA > 0

x = (49^(1/2)+5)/(2*2) or x = (5-49^(1/2))/(2*2)

x = 3 or x = -1/2

x in { -1/2, 3, 2}

(x+1/2)*(x-3)*(x-2) = 0

((x+1/2)*(x-3)*(x-2))/(2*x+1) = 0

( x+1/2 )

x+1/2 = 0 // - 1/2

x = -1/2

( x-2 )

x-2 = 0 // + 2

x = 2

( x-3 )

x-3 = 0 // + 3

x = 3

x in { -1/2}

x in { 2, 3 }

See similar equations:

| 4u+2w=8 | | (x+3)(x-8)=26 | | x^2-bx-16=0 | | -x-1=1-21 | | -1-1=1-21 | | 2u+2w=6 | | w^3+15w^2-w=15 | | -6x+10y=50 | | 2/3x+8-1=4/3x-3+x | | 6(6r+6)-5=1+6r | | 63-1=2x+3 | | 2y-4x=-34 | | 4b+6b-54=0 | | w^3+9w^2-w=9 | | 22/19=p/100 | | 120=3x+(x+30) | | 9/-18b-4 | | m2+3/2m=1 | | 9k-12=-39 | | 160=5x | | 72+18=x/6 | | x-7/5=13/5 | | t=.82t | | 48=2(w)w+2 | | 12d=1444 | | (2)1/3 | | -5=-1/2a | | 2m-2=6m-5 | | a+9=36 | | 24+8(z-3)=72+1 | | 9/x=15/3 | | (2x-5)(3x+8)=0 |

Equations solver categories